羅姆第4代SiC MOSFET在電動汽車電控系統(tǒng)中的應用及其優(yōu)勢

更新時間:2022-03-08 | 發(fā)布人:

引言

近年來,為了實現(xiàn)“碳中和”等減輕環(huán)境負荷的目標,需要進一步普及下一代電動汽車(xEV),從而推動了更高效、更小型、更輕量的電動系統(tǒng)的開發(fā)。尤其是在電動汽車(EV)領域,為了延長續(xù)航里程并減小車載電池的尺寸,提高發(fā)揮驅動核心作用的電控系統(tǒng)的效率已成為一個重要課題。SiC(碳化硅)作為新一代寬禁帶半導體材料,具備高電壓、大電流、高溫、高頻率和低損耗等獨特優(yōu)勢。因此,業(yè)內對碳化硅功率元器件在電動汽車上的應用寄予厚望。

羅姆第4代SiC MOSFET應用于“三合一”電橋

近日,上汽大眾與臻驅科技聯(lián)合開發(fā)的首款基于SiC技術的 “三合一”電橋完成試制。據悉,對比現(xiàn)有電橋產品,這款SiC“三合一”電橋在能耗表現(xiàn)方面非常搶眼,每百公里可節(jié)約0.645kW·h電能。以上汽大眾在ID 4X車型上的測試結果為例,對比傳統(tǒng)的IGBT方案,整車續(xù)航里程提升了4.5%。由此可知,SiC電橋方案的優(yōu)勢非常明顯。但作為一種新技術,SiC電控系統(tǒng)還存在一些開發(fā)難點,比如SiC模塊的本體設計,以及高速開關帶來的系統(tǒng)EMC應對難題。值得一提的是,臻驅科技此次完成試制的“三合一”電橋采用的是羅姆第4代SiC MOSFET裸芯片,充分發(fā)揮了碳化硅器件的性能優(yōu)勢。

羅姆于2020年完成開發(fā)的第4代SiC MOSFET,是在不犧牲短路耐受時間的情況下實現(xiàn)業(yè)內超低導通電阻的產品。該產品用于車載主驅逆變器時,效率更高,與使用IGBT時相比,效率顯著提升,因此非常有助于延長電動汽車的續(xù)航里程,并減少電池使用量,降低電動汽車的成本。

第4代SiC MOSFET和IGBT的逆變器效率比較
圖 | 第4代SiC MOSFET和IGBT的逆變器效率比較

羅姆第4代SiC MOSFET的獨特優(yōu)勢

羅姆作為碳化硅領域的深耕者,從2000年就開始了相關的研發(fā)工作,并在2009年收購碳化硅襯底供應商SiCrystal后,于2010年率先推出了商用碳化硅MOSFET,目前產品涵蓋SiC SBD、SiC MOSFET和全SiC模組,其中SiC SBD、SiC MOSFET可以裸芯片的形式供貨。羅姆在2015年發(fā)布了第3代也是第一款商用溝槽結構的SiC MOSFET產品,支持18V驅動。2020年,羅姆又推出了第4代SiC MOSFET。目前,不僅可供應裸芯片,還可供應分立封裝的產品。分立封裝的產品已經完成了面向消費電子設備和工業(yè)設備應用的產品線開發(fā),后續(xù)將逐步開發(fā)適用于車載應用的產品。

對比羅姆的第3代SiC MOSFET產品,第4代SiC MOSFET具有導通電阻更低的特點。根據測試結果顯示,在芯片尺寸相同且在不犧牲短路耐受時間的前提下,羅姆采用改進的雙溝槽結構,使得MOSFET的導通電阻降低了約40%,傳導損耗相應降低。此外,從RDS(on)與VGS的關系圖中,我們可以發(fā)現(xiàn)第4代SiC MOSFET在柵極電壓處于+15V和+18V之間時具有更平坦的梯度,這意味著第4代SiC MOSFET的驅動電壓范圍可拓展至15V-18V。

第3代和第4代SiC MOSFET導通電阻測試結果示意圖
圖 | 第3代和第4代SiC MOSFET導通電阻測試結果示意圖

同時,第4代SiC MOSFET還改善了開關性能。通常,為了滿足更大電流和更低導通電阻的需求,MOSFET存在芯片面積增大、寄生電容增加的趨勢,因而存在無法充分發(fā)揮碳化硅原有的高速開關特性的課題。第4代SiC MOSFET,通過大幅降低柵漏電容(Cgd),成功地使開關損耗比以往產品降低約50%。

第3代和第4代SiC MOSFET開關損耗測試結果示意圖
圖 | 第3代和第4代SiC MOSFET開關損耗測試結果示意圖

此外,羅姆還對第4代SiC MOSFET進行了電容比的優(yōu)化,大大提高了柵極和漏極之間的電容(CGD)與柵極和源極之間的電容(CGS)之比,從而減少了寄生電容的影響。比如,可以減小在半橋中一個快速開關的SiC MOSFET施加在另一個SiC MOSFET上的高速電壓瞬變(dVDS/dt)對柵源電壓VGS的影響。這將降低由正VGS尖峰引起的SiC MOSFET意外寄生導通的可能性,以及可能損壞SiC MOSFET的負VGS尖峰出現(xiàn)的可能性。